The
Purplemath Forums 
Sectors, Areas, and Arcs: Worked Examples (page 2 of 2)
The "angular velocity" is the number of times the wheel revolves in some named time period. So this question is asking me to find the number of times the wheel twirls around in one minute. To do this, I'll need to find the distance covered (per minute) when moving at 45 kph. Then I'll need to find the circumference of the wheel, and divide the total perminute distance by this "once around" distance. The number of circumferences which fit inside the total distance is the number of times the wheel revolves in that time period. First, I'll find the distance, using what I've learned about converting units: So the distance covered in one minute is 75,000 centimeters. The diameter of the wheel is 100 cm, so the radius is 50 cm, and the circumference is 100π cm. How many of these circumferences (wheel revolutions) fit inside the 75,000 cm? The angular velocity is ω = 239 rpm The abbreviation "rpm" for "revolutions per minute" is standard, so you can safely use this notation. The character "ω" is the Greek lowercase letter "omega", and is often the variable used for angular velocity. Note: This speed isn't as fast as it might appear: it's just under four revolutions per second. You can do that on your bike without breaking a sweat.
The linear velocity will be the distance, stretched out in the straight line, that a point on the wheel moves during a defined period of time. They've given me the number of times the wheel revolves each minute. A fixed point on the tire (say, a pebble in the tire's tread) moves the length of the circumference for each revolution. Unrolling this distance onto the ground, the bike will move along the ground the same distance, one circumference, for each revolution. So this question is asking me to find
the circumference length, and then use this to find the total distance
covered per minute. Since the diameter is 78
cm, then the circumference is C
= 78π cm. This means that the bike
moves 78π
cm forward for each revolution of the tire. There are 120
such revolutions per minute, so: (78pi cm/rev)×(120 rev/min) = 9,360pi cm/min Now I need to convert this from centimetersperminute to kilometersperhour: The bike is moving at about 17.6 kph. This is about eleven miles an hour.
The circumference of the circle with r = 93,000,000 mi will be the linear distance that the Earth covers in one year. C = 2π(93,000,000 mi)/year = 186,000,000π mi/yr This is the distance covered, in miles, in one year. There are twentyfour hours in a day, sixty minutes in an hour, and sixty seconds in a minute, so the total number of seconds for that year is: (365.25 days/yr)(24 hr/day)(60 min/hr)(60 sec/min) = 31,557,600 sec/yr Then the linear velocity, being the total linear distance divided by the total time and expressed as a unit rate, is: (186,000,000π mi/yr)/(31,557,600 sec/yr) = 18.51649788... mi/sec The linear velocity of the Earth is about 19 miles per second.
"A curve of radius 3000 ft" means that, if you tried to fit a circle snugly inside the curve, the best fit would be a circle with a radius of r = 3000 feet. In other words, I can use circle facts to answer this question. Copyright © Elizabeth Stapel 20102011 All Rights Reserved Since the radius of the curve is in feet and since I need to find the angle for one minute, I'll start by converting the milesperhour speed to feetpersecond: (10 mi/hr)(5280 ft/mi)(1 hr / 60 min) = 880 ft/min The amount of the curved track that the train covers is also a portion of the circumference of the circle. So the 880 feet is the arc length, and now I need to find the subtended angle: But this value is in radians, and I need my answer to be in degrees, so I need to convert: (0.293333... radians)(180°/π radians) = 16.80676199...° The train turns through an angle of about 17°
They gave me the radius of a circle and a subtended angle, and want me to find the area. So I'll be needing to use the sectorarea formula. However, since the wiper blade itself does not go all the way down to the pivot point for the swing arm, so I'll need to subtract out a portion of the sector to find the area that is actually covered by the blade. Since they gave me the angle in degrees, I'll need to be careful to adjust the formulas accordingly. This is the total area swept by the swing arm. The wiper blade only covers the outer 60 cm of the length of the swing arm, so the inner 72 – 60 = 12 cm is not covered by the blade. I need to subtract this area: The blade sweeps about 4618 cm^{2} of the windshield. << Previous Top  1  2  Return to Index



Copyright © 20102012 Elizabeth Stapel  About  Terms of Use 




