Search

• Given that  is a zero of x4 + 6x3 – 7x2 – 30x + 10,
fully solve the equation
x4 + 6x3 – 7x2 – 30x + 10 = 0.
• You need to be very careful working problems like this. It's easy to make mistakes.

 Do the first couple of steps: Multiply to get the entry that goes under the –7: Do the next couple of steps: Multiply to get the entry that goes under the 10: Complete the division: Now you're ready for the next division, which works out like this:

Note that, since this second synthetic division handled the conjugate radical root, all the complex coefficients disappeared. You should expect this to happen. Whenever you have roots that are conjugates, dividing out one of those roots will make things very messy, but then dividing out the other will clean things back up. Copyright © Elizabeth Stapel 2002-2011 All Rights Reserved

If you want to get the right answers, do not try to do the messier parts in your head or in the margins; take out a sheet of scratch paper and do your work properly.

 Cite this article as: Stapel, Elizabeth. "Synthetic Division: Computations w/ Radicals." Purplemath. Available from     https://www.purplemath.com/modules/synthcmp.htm. Accessed [Date] [Month] 2016

Reviews of
Internet Sites:
Free Help
Practice
Et Cetera

Study Skills Survey

Tutoring from Purplemath
Find a local math tutor