height above trampoline modelled by h = -4.9(t - 1)^2 + 6.3

Quadratic equations and inequalities, variation equations, function notation, systems of equations, etc.
frankie10
Posts: 24
Joined: Wed Jun 17, 2009 3:49 pm
Contact:

height above trampoline modelled by h = -4.9(t - 1)^2 + 6.3

Postby frankie10 » Wed Jul 22, 2009 7:15 pm

A trampoline artist bounces on a trampoline.Her height above ground is modelled by the function h=-4.9(t-1)^2+6.3.

how long after she leaves the trampoline does she reach her maximum height.

Honeysuckle588
Posts: 23
Joined: Wed Jul 15, 2009 4:07 pm
Contact:

Re: height above trampoline modelled by h = -4.9(t - 1)^2 + 6.3

Postby Honeysuckle588 » Thu Jul 23, 2009 4:46 am

This type of function is called a quadratic whose graph is a parabola. The highest(lowest) point of a parabola is called the vertex. Do you know how to find the vertex of a parabola?

frankie10
Posts: 24
Joined: Wed Jun 17, 2009 3:49 pm
Contact:

Re: height above trampoline modelled by h = -4.9(t - 1)^2 + 6.3

Postby frankie10 » Thu Jul 23, 2009 5:11 pm

no,i'm not sure how

Honeysuckle588
Posts: 23
Joined: Wed Jul 15, 2009 4:07 pm
Contact:

Re: height above trampoline modelled by h = -4.9(t - 1)^2 + 6.3

Postby Honeysuckle588 » Thu Jul 23, 2009 8:15 pm

Ok...This particular quadratic is written in the form


which is just a transformation of the basic quadratic which has a vertex at (0, 0). The two most important transformations for your question are the value of b and c.

The b value tells you how far to the right the vertex has moved, and the c value tells you how far up the vertex has moved.

In your case, the b value is 1 and the c value is 6.3.

So your vertex is at (1, 6.3). Since this is a coordinate it has the form (t, h) for your equation.

With this information, can you tell me when the highest point (i.e. the vertex) is reached?


Return to “Intermediate Algebra”

cron