Hi all,

How do you find out if this Parametric equation

x = -2t + 3 ; y = -t - 1 ; z = -3t + 2

Is perpendicular to this parametric equation

x = -2 + 6t ; y = 3 - 6t ; z = -3 - 2t

Thanks

2 posts
• Page **1** of **1**

Hi all,

How do you find out if this Parametric equation

x = -2t + 3 ; y = -t - 1 ; z = -3t + 2

Is perpendicular to this parametric equation

x = -2 + 6t ; y = 3 - 6t ; z = -3 - 2t

Thanks

How do you find out if this Parametric equation

x = -2t + 3 ; y = -t - 1 ; z = -3t + 2

Is perpendicular to this parametric equation

x = -2 + 6t ; y = 3 - 6t ; z = -3 - 2t

Thanks

- stephenalistoun
**Posts:**2**Joined:**Sun Apr 10, 2011 7:31 pm

stephenalistoun wrote:How do you find out if this Parametric equation

x = -2t + 3 ; y = -t - 1 ; z = -3t + 2

Is perpendicular to this parametric equation

x = -2 + 6t ; y = 3 - 6t ; z = -3 - 2t

The planes determined by the vectors corresponding to these parametric equations will intersect at an angle A of 90* (or pi/2), as will their normal vectors. So apply the formula

Confirm the numerical result.

- nona.m.nona
**Posts:**257**Joined:**Sun Dec 14, 2008 11:07 pm

2 posts
• Page **1** of **1**